高速フーリエ変換(FFT)アルゴリズムは信号処理から気象計算に至るまで広い分 野で果した役割にははかりしれないものがある.しかし,FFTが利用できるにはデー タ点が等間隔である必要がある.
そこで,DuttとRokhlinはデータ点が不等間隔の場合に誤差を許すならば,FFT を利用できるというアイデアのもとに巧妙な近似式を用いて計算することを考えた. 不等間隔離散逆フーリエ変換の場合,近似により等間隔離散逆フーリエ変換として計 算を行い,また,不等間隔離散順フーリエ変換の場合には,解くべき連立一次方程式 の係数行列を正定値Hermite行列に変形することで,共役勾配法を用いて解いた.
不等間隔離散順フーリエ変換の場合に現れる係数行列に注目すると,正定値 Hermite行列であるだけでなくToeplitz行列でもある.Toeplitz行列を係数行列にも つToeplitz系に対しては,前処理付き共役勾配法や直接解法アルゴリズムなどがあ り,本発表ではこれらの様々な解法を用いて不等間隔高速順フーリエ変換の計算を 行った結果を報告する.